FunctionMinkowskiDistanceLibrary   "FunctionMinkowskiDistance" 
Method for Minkowski Distance, 
The Minkowski distance or Minkowski metric is a metric in a normed vector space
which can be considered as a generalization of both the Euclidean distance and 
the Manhattan distance. 
It is named after the German mathematician Hermann Minkowski.
reference: en.wikipedia.org
 double(point_ax, point_ay, point_bx, point_by, p_value)  Minkowsky Distance for single points.
  Parameters:
     point_ax : float, x value of point a.
     point_ay : float, y value of point a.
     point_bx : float, x value of point b.
     point_by : float, y value of point b.
     p_value : float, p value, default=1.0(1: manhatan, 2: euclidean), does not support chebychev. 
  Returns: float
 ndim(point_x, point_y, p_value)  Minkowsky Distance for N dimensions.
  Parameters:
     point_x : float array, point x dimension attributes.
     point_y : float array, point y dimension attributes.
     p_value : float, p value, default=1.0(1: manhatan, 2: euclidean), does not support chebychev. 
  Returns: float
Mdim
Function: Multi Dimension IndexerDescription:
    A Function that returns the flat index of a N dimensions array.
Inputs:
    _indices: Array containing dimension indices.¹
    _limits: Array containing dimension size.¹
    Note:
        ¹: _indices and _limits size must match. indices must be within dimension size.
Outputs:
    _offset: the flat 1D index.
Resources:
    eli.thegreenplace.net

