Based in the model of Machine learning: Lorentzian Classification by @jdehorty, you will be able to get into trending moves and get interesting entries in the market with this strategy. I also put some new features for better backtesting results! Backtesting context: 2022-07-19 to 2023-04-14 of US500 1H by PEPPERSTONE. Commissions: 0.03% for each entry, 0.03%...

964

The Endpointed SSA of Price: A Comprehensive Tool for Market Analysis and Decision-Making The financial markets present sophisticated challenges for traders and investors as they navigate the complexities of market behavior. To effectively interpret and capitalize on these complexities, it is crucial to employ powerful analytical tools that can reveal hidden...

233

Introduction: This script implements a comprehensive trading strategy that adheres to the established rules and guidelines of housing trading. It leverages advanced machine learning techniques and incorporates customised moving averages, including the Conceptive Price Moving Average (CPMA), to provide accurate signals for informed trading decisions in the housing...

63

█ OVERVIEW A Lorentzian Distance Classifier (LDC) is a Machine Learning classification algorithm capable of categorizing historical data from a multi-dimensional feature space. This indicator demonstrates how Lorentzian Classification can also be used to predict the direction of future price movements when used as the distance metric for a novel implementation of...

10374

Library "MLExtensions" normalizeDeriv(src, quadraticMeanLength) Returns the smoothed hyperbolic tangent of the input series. Parameters: src : The input series (i.e., the first-order derivative for price). quadraticMeanLength : The length of the quadratic mean (RMS). Returns: nDeriv The normalized derivative of the input series. ...

374

Library "kNN" Collection of experimental kNN functions. This is a work in progress, an improvement upon my original kNN script: The script can be recreated with this library. Unlike the original script, that used multiple arrays, this has been reworked with the new Pine Script matrix features. To make a kNN prediction, the following data should be supplied...

17

Description: kNN is a very robust and simple method for data classification and prediction. It is very effective if the training data is large. However, it is distinguished by difficulty at determining its main parameter, K (a number of nearest neighbors), beforehand. The computation cost is also quite high because we need to compute distance of each instance to...

1635

Introduction Esqvair's Neural Reversal Probability Indicator is the indicator that shows probability of reversal. Warning: This script should only be used on 1 minute chart. How to use When a signal appears (by default it is a green bar), a reversal should be expected. The signal appears when the indicator value >= Threshold. If you want more signals, you must...

240

This is a re-implementation of @veryfid's wonderful Tesla Coil indicator to leverage basic Machine Learning Algorithms to help classify coil crossovers. The original Tesla Coil indicator requires extensive training and practice for the user to develop adequate intuition to interpret coil crossovers. The goal for this version is to help the user understand the...

540

Core Concepts According to Jeff Greenblatt in his book "Breakthrough Strategies for Predicting Any Market", Fibonacci and Lucas sequences are observed repeated in the bar counts from local pivot highs/lows. They occur from high to high, low to high, high to low, or low to high. Essentially, this phenomenon is observed repeatedly from any pivot points on any time...

156

Library "WIPNNetwork" this is a work in progress (WIP) and prone to have some errors, so use at your own risk... let me know if you find any issues.. Method for a generalized Neural Network. network(x) Generalized Neural Network Method. Parameters: x : TODO: add parameter x description here Returns: TODO: add what function returns

50

Library "FunctionNNLayer" Generalized Neural Network Layer method. function(inputs, weights, n_nodes, activation_function, bias, alpha, scale) Generalized Layer. Parameters: inputs : float array, input values. weights : float array, weight values. n_nodes : int, number of nodes in layer. activation_function : string, default='sigmoid',...

43

Library "FunctionNNPerceptron" Perceptron Function for Neural networks. function(inputs, weights, bias, activation_function, alpha, scale) generalized perceptron node for Neural Networks. Parameters: inputs : float array, the inputs of the perceptron. weights : float array, the weights for inputs. bias : float, default=1.0, the default bias...

31

Library "MLActivationFunctions" Activation functions for Neural networks. binary_step(value) Basic threshold output classifier to activate/deactivate neuron. Parameters: value : float, value to process. Returns: float linear(value) Input is the same as output. Parameters: value : float, value to process. Returns: float sigmoid(value) ...

28

Library "MLLossFunctions" Methods for Loss functions. mse(expects, predicts) Mean Squared Error (MSE) " MSE = 1/N * sum ((y - y')^2) ". Parameters: expects : float array, expected values. predicts : float array, prediction values. Returns: float binary_cross_entropy(expects, predicts) Binary Cross-Entropy Loss (log). Parameters: ...

25

Daily trend indicator based on financial astrology cycles detected with advanced machine learning techniques for some of the most important market indexes: DJI, UK100, SPX, IBC, IXIC, NI225, BANKNIFTY, NIFTY and GLD fund (not index) for Gold predictions. The daily price trend is forecasted through planets cycles (angular aspects, speed phases, declination zone),...

173

This daily trend indicator is based on financial astrology cycles detected with advanced machine learning techniques for the crypto-currencies research portfolio: ADA, BAT, BNB, BTC, DASH, EOS, ETC, ETH, LINK, LTC, XLM, XMR, XRP, ZEC and ZRX. The daily price trend is forecasted through this planets cycles (angular aspects, speed, declination), fast ones are based...

333

This is an experimental strategy that uses a Volume-weighted MA (VWMA) crossing together with Machine Learning kNN filter that uses ADX and MFI to predict, whether the signal is useful. k-nearest neighbours (kNN) is one of the simplest Machine Learning classification algorithms: it puts input parameters in a multidimensional space, and then when a new set of...

558