PINE LIBRARY
Aggiornato machine_learning

Library "machine_learning"
euclidean(a, b)
Parameters:
a (array<float>)
b (array<float>)
manhattan(a, b)
Parameters:
a (array<float>)
b (array<float>)
cosine_similarity(a, b)
Parameters:
a (array<float>)
b (array<float>)
cosine_distance(a, b)
Parameters:
a (array<float>)
b (array<float>)
chebyshev(a, b)
Parameters:
a (array<float>)
b (array<float>)
minkowski(a, b, p)
Parameters:
a (array<float>)
b (array<float>)
p (float)
dot_product(a, b)
Parameters:
a (array<float>)
b (array<float>)
vector_norm(arr, p)
Parameters:
arr (array<float>)
p (float)
sigmoid(x)
Parameters:
x (float)
sigmoid_derivative(x)
Parameters:
x (float)
tanh_derivative(x)
Parameters:
x (float)
relu(x)
Parameters:
x (float)
relu_derivative(x)
Parameters:
x (float)
leaky_relu(x, alpha)
Parameters:
x (float)
alpha (float)
leaky_relu_derivative(x, alpha)
Parameters:
x (float)
alpha (float)
elu(x, alpha)
Parameters:
x (float)
alpha (float)
gelu(x)
Parameters:
x (float)
swish(x, beta)
Parameters:
x (float)
beta (float)
softmax(arr)
Parameters:
arr (array<float>)
apply_activation(arr, activation_type, alpha)
Parameters:
arr (array<float>)
activation_type (string)
alpha (float)
normalize_minmax(arr, min_val, max_val)
Parameters:
arr (array<float>)
min_val (float)
max_val (float)
normalize_zscore(arr, mean_val, std_val)
Parameters:
arr (array<float>)
mean_val (float)
std_val (float)
normalize_matrix_cols(m)
Parameters:
m (matrix<float>)
scaler_fit(arr, method)
Parameters:
arr (array<float>)
method (string)
scaler_fit_matrix(m, method)
Parameters:
m (matrix<float>)
method (string)
scaler_transform(scaler, arr)
Parameters:
scaler (ml_scaler)
arr (array<float>)
scaler_transform_matrix(scaler, m)
Parameters:
scaler (ml_scaler)
m (matrix<float>)
clip(x, lo, hi)
Parameters:
x (float)
lo (float)
hi (float)
clip_array(arr, lo, hi)
Parameters:
arr (array<float>)
lo (float)
hi (float)
loss_mse(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_rmse(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_mae(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_binary_crossentropy(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_huber(predicted, actual, delta)
Parameters:
predicted (array<float>)
actual (array<float>)
delta (float)
gradient_step(weights, gradients, lr)
Parameters:
weights (array<float>)
gradients (array<float>)
lr (float)
adam_step(weights, gradients, m, v, lr, beta1, beta2, t, epsilon)
Parameters:
weights (array<float>)
gradients (array<float>)
m (array<float>)
v (array<float>)
lr (float)
beta1 (float)
beta2 (float)
t (int)
epsilon (float)
clip_gradients(gradients, max_norm)
Parameters:
gradients (array<float>)
max_norm (float)
lr_decay(initial_lr, decay_rate, step)
Parameters:
initial_lr (float)
decay_rate (float)
step (int)
lr_cosine_annealing(initial_lr, min_lr, step, total_steps)
Parameters:
initial_lr (float)
min_lr (float)
step (int)
total_steps (int)
knn_create(k, distance_type)
Parameters:
k (int)
distance_type (string)
knn_fit(model, X, y)
Parameters:
model (ml_knn)
X (matrix<float>)
y (array<int>)
knn_predict(model, x)
Parameters:
model (ml_knn)
x (array<float>)
knn_predict_proba(model, x)
Parameters:
model (ml_knn)
x (array<float>)
knn_batch_predict(model, X)
Parameters:
model (ml_knn)
X (matrix<float>)
linreg_fit(X, y)
Parameters:
X (matrix<float>)
y (array<float>)
ridge_fit(X, y, lambda)
Parameters:
X (matrix<float>)
y (array<float>)
lambda (float)
linreg_predict(model, x)
Parameters:
model (ml_linreg)
x (array<float>)
linreg_predict_batch(model, X)
Parameters:
model (ml_linreg)
X (matrix<float>)
linreg_score(model, X, y)
Parameters:
model (ml_linreg)
X (matrix<float>)
y (array<float>)
logreg_create(n_features, learning_rate, iterations)
Parameters:
n_features (int)
learning_rate (float)
iterations (int)
logreg_fit(model, X, y)
Parameters:
model (ml_logreg)
X (matrix<float>)
y (array<int>)
logreg_predict_proba(model, x)
Parameters:
model (ml_logreg)
x (array<float>)
logreg_predict(model, x, threshold)
Parameters:
model (ml_logreg)
x (array<float>)
threshold (float)
logreg_batch_predict(model, X, threshold)
Parameters:
model (ml_logreg)
X (matrix<float>)
threshold (float)
nb_create(n_classes)
Parameters:
n_classes (int)
nb_fit(model, X, y)
Parameters:
model (ml_nb)
X (matrix<float>)
y (array<int>)
nb_predict_proba(model, x)
Parameters:
model (ml_nb)
x (array<float>)
nb_predict(model, x)
Parameters:
model (ml_nb)
x (array<float>)
nn_create(layers, activation)
Parameters:
layers (array<int>)
activation (string)
nn_forward(model, x)
Parameters:
model (ml_nn)
x (array<float>)
nn_predict_class(model, x)
Parameters:
model (ml_nn)
x (array<float>)
accuracy(y_true, y_pred)
Parameters:
y_true (array<int>)
y_pred (array<int>)
precision(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
recall(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
f1_score(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
r_squared(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
mse(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
rmse(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
mae(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
confusion_matrix(y_true, y_pred, n_classes)
Parameters:
y_true (array<int>)
y_pred (array<int>)
n_classes (int)
sliding_window(data, window_size)
Parameters:
data (array<float>)
window_size (int)
train_test_split(X, y, test_ratio)
Parameters:
X (matrix<float>)
y (array<int>)
test_ratio (float)
create_binary_labels(data, threshold)
Parameters:
data (array<float>)
threshold (float)
lag_matrix(data, n_lags)
Parameters:
data (array<float>)
n_lags (int)
signal_to_position(prediction, threshold_long, threshold_short)
Parameters:
prediction (float)
threshold_long (float)
threshold_short (float)
confidence_sizing(probability, max_size, min_confidence)
Parameters:
probability (float)
max_size (float)
min_confidence (float)
kelly_sizing(win_rate, avg_win, avg_loss, max_fraction)
Parameters:
win_rate (float)
avg_win (float)
avg_loss (float)
max_fraction (float)
sharpe_ratio(returns, risk_free_rate)
Parameters:
returns (array<float>)
risk_free_rate (float)
sortino_ratio(returns, risk_free_rate)
Parameters:
returns (array<float>)
risk_free_rate (float)
max_drawdown(equity)
Parameters:
equity (array<float>)
atr_stop_loss(entry_price, atr, multiplier, is_long)
Parameters:
entry_price (float)
atr (float)
multiplier (float)
is_long (bool)
risk_reward_take_profit(entry_price, stop_loss, ratio)
Parameters:
entry_price (float)
stop_loss (float)
ratio (float)
ensemble_vote(predictions)
Parameters:
predictions (array<int>)
ensemble_weighted_average(predictions, weights)
Parameters:
predictions (array<float>)
weights (array<float>)
smooth_prediction(current, previous, alpha)
Parameters:
current (float)
previous (float)
alpha (float)
regime_classifier(volatility, trend_strength, vol_threshold, trend_threshold)
Parameters:
volatility (float)
trend_strength (float)
vol_threshold (float)
trend_threshold (float)
ml_knn
Fields:
k (series int)
distance_type (series string)
X_train (matrix<float>)
y_train (array<int>)
ml_linreg
Fields:
coefficients (array<float>)
intercept (series float)
lambda (series float)
ml_logreg
Fields:
weights (array<float>)
bias (series float)
learning_rate (series float)
iterations (series int)
ml_nn
Fields:
layers (array<int>)
weights (matrix<float>)
biases (array<float>)
weight_offsets (array<int>)
bias_offsets (array<int>)
activation (series string)
ml_nb
Fields:
class_priors (array<float>)
means (matrix<float>)
variances (matrix<float>)
n_classes (series int)
ml_scaler
Fields:
min_vals (array<float>)
max_vals (array<float>)
means (array<float>)
stds (array<float>)
method (series string)
ml_train_result
Fields:
loss_history (array<float>)
final_loss (series float)
converged (series bool)
iterations_run (series int)
ml_prediction
Fields:
class_label (series int)
probability (series float)
probabilities (array<float>)
value (series float)
euclidean(a, b)
Parameters:
a (array<float>)
b (array<float>)
manhattan(a, b)
Parameters:
a (array<float>)
b (array<float>)
cosine_similarity(a, b)
Parameters:
a (array<float>)
b (array<float>)
cosine_distance(a, b)
Parameters:
a (array<float>)
b (array<float>)
chebyshev(a, b)
Parameters:
a (array<float>)
b (array<float>)
minkowski(a, b, p)
Parameters:
a (array<float>)
b (array<float>)
p (float)
dot_product(a, b)
Parameters:
a (array<float>)
b (array<float>)
vector_norm(arr, p)
Parameters:
arr (array<float>)
p (float)
sigmoid(x)
Parameters:
x (float)
sigmoid_derivative(x)
Parameters:
x (float)
tanh_derivative(x)
Parameters:
x (float)
relu(x)
Parameters:
x (float)
relu_derivative(x)
Parameters:
x (float)
leaky_relu(x, alpha)
Parameters:
x (float)
alpha (float)
leaky_relu_derivative(x, alpha)
Parameters:
x (float)
alpha (float)
elu(x, alpha)
Parameters:
x (float)
alpha (float)
gelu(x)
Parameters:
x (float)
swish(x, beta)
Parameters:
x (float)
beta (float)
softmax(arr)
Parameters:
arr (array<float>)
apply_activation(arr, activation_type, alpha)
Parameters:
arr (array<float>)
activation_type (string)
alpha (float)
normalize_minmax(arr, min_val, max_val)
Parameters:
arr (array<float>)
min_val (float)
max_val (float)
normalize_zscore(arr, mean_val, std_val)
Parameters:
arr (array<float>)
mean_val (float)
std_val (float)
normalize_matrix_cols(m)
Parameters:
m (matrix<float>)
scaler_fit(arr, method)
Parameters:
arr (array<float>)
method (string)
scaler_fit_matrix(m, method)
Parameters:
m (matrix<float>)
method (string)
scaler_transform(scaler, arr)
Parameters:
scaler (ml_scaler)
arr (array<float>)
scaler_transform_matrix(scaler, m)
Parameters:
scaler (ml_scaler)
m (matrix<float>)
clip(x, lo, hi)
Parameters:
x (float)
lo (float)
hi (float)
clip_array(arr, lo, hi)
Parameters:
arr (array<float>)
lo (float)
hi (float)
loss_mse(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_rmse(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_mae(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_binary_crossentropy(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_huber(predicted, actual, delta)
Parameters:
predicted (array<float>)
actual (array<float>)
delta (float)
gradient_step(weights, gradients, lr)
Parameters:
weights (array<float>)
gradients (array<float>)
lr (float)
adam_step(weights, gradients, m, v, lr, beta1, beta2, t, epsilon)
Parameters:
weights (array<float>)
gradients (array<float>)
m (array<float>)
v (array<float>)
lr (float)
beta1 (float)
beta2 (float)
t (int)
epsilon (float)
clip_gradients(gradients, max_norm)
Parameters:
gradients (array<float>)
max_norm (float)
lr_decay(initial_lr, decay_rate, step)
Parameters:
initial_lr (float)
decay_rate (float)
step (int)
lr_cosine_annealing(initial_lr, min_lr, step, total_steps)
Parameters:
initial_lr (float)
min_lr (float)
step (int)
total_steps (int)
knn_create(k, distance_type)
Parameters:
k (int)
distance_type (string)
knn_fit(model, X, y)
Parameters:
model (ml_knn)
X (matrix<float>)
y (array<int>)
knn_predict(model, x)
Parameters:
model (ml_knn)
x (array<float>)
knn_predict_proba(model, x)
Parameters:
model (ml_knn)
x (array<float>)
knn_batch_predict(model, X)
Parameters:
model (ml_knn)
X (matrix<float>)
linreg_fit(X, y)
Parameters:
X (matrix<float>)
y (array<float>)
ridge_fit(X, y, lambda)
Parameters:
X (matrix<float>)
y (array<float>)
lambda (float)
linreg_predict(model, x)
Parameters:
model (ml_linreg)
x (array<float>)
linreg_predict_batch(model, X)
Parameters:
model (ml_linreg)
X (matrix<float>)
linreg_score(model, X, y)
Parameters:
model (ml_linreg)
X (matrix<float>)
y (array<float>)
logreg_create(n_features, learning_rate, iterations)
Parameters:
n_features (int)
learning_rate (float)
iterations (int)
logreg_fit(model, X, y)
Parameters:
model (ml_logreg)
X (matrix<float>)
y (array<int>)
logreg_predict_proba(model, x)
Parameters:
model (ml_logreg)
x (array<float>)
logreg_predict(model, x, threshold)
Parameters:
model (ml_logreg)
x (array<float>)
threshold (float)
logreg_batch_predict(model, X, threshold)
Parameters:
model (ml_logreg)
X (matrix<float>)
threshold (float)
nb_create(n_classes)
Parameters:
n_classes (int)
nb_fit(model, X, y)
Parameters:
model (ml_nb)
X (matrix<float>)
y (array<int>)
nb_predict_proba(model, x)
Parameters:
model (ml_nb)
x (array<float>)
nb_predict(model, x)
Parameters:
model (ml_nb)
x (array<float>)
nn_create(layers, activation)
Parameters:
layers (array<int>)
activation (string)
nn_forward(model, x)
Parameters:
model (ml_nn)
x (array<float>)
nn_predict_class(model, x)
Parameters:
model (ml_nn)
x (array<float>)
accuracy(y_true, y_pred)
Parameters:
y_true (array<int>)
y_pred (array<int>)
precision(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
recall(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
f1_score(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
r_squared(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
mse(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
rmse(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
mae(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
confusion_matrix(y_true, y_pred, n_classes)
Parameters:
y_true (array<int>)
y_pred (array<int>)
n_classes (int)
sliding_window(data, window_size)
Parameters:
data (array<float>)
window_size (int)
train_test_split(X, y, test_ratio)
Parameters:
X (matrix<float>)
y (array<int>)
test_ratio (float)
create_binary_labels(data, threshold)
Parameters:
data (array<float>)
threshold (float)
lag_matrix(data, n_lags)
Parameters:
data (array<float>)
n_lags (int)
signal_to_position(prediction, threshold_long, threshold_short)
Parameters:
prediction (float)
threshold_long (float)
threshold_short (float)
confidence_sizing(probability, max_size, min_confidence)
Parameters:
probability (float)
max_size (float)
min_confidence (float)
kelly_sizing(win_rate, avg_win, avg_loss, max_fraction)
Parameters:
win_rate (float)
avg_win (float)
avg_loss (float)
max_fraction (float)
sharpe_ratio(returns, risk_free_rate)
Parameters:
returns (array<float>)
risk_free_rate (float)
sortino_ratio(returns, risk_free_rate)
Parameters:
returns (array<float>)
risk_free_rate (float)
max_drawdown(equity)
Parameters:
equity (array<float>)
atr_stop_loss(entry_price, atr, multiplier, is_long)
Parameters:
entry_price (float)
atr (float)
multiplier (float)
is_long (bool)
risk_reward_take_profit(entry_price, stop_loss, ratio)
Parameters:
entry_price (float)
stop_loss (float)
ratio (float)
ensemble_vote(predictions)
Parameters:
predictions (array<int>)
ensemble_weighted_average(predictions, weights)
Parameters:
predictions (array<float>)
weights (array<float>)
smooth_prediction(current, previous, alpha)
Parameters:
current (float)
previous (float)
alpha (float)
regime_classifier(volatility, trend_strength, vol_threshold, trend_threshold)
Parameters:
volatility (float)
trend_strength (float)
vol_threshold (float)
trend_threshold (float)
ml_knn
Fields:
k (series int)
distance_type (series string)
X_train (matrix<float>)
y_train (array<int>)
ml_linreg
Fields:
coefficients (array<float>)
intercept (series float)
lambda (series float)
ml_logreg
Fields:
weights (array<float>)
bias (series float)
learning_rate (series float)
iterations (series int)
ml_nn
Fields:
layers (array<int>)
weights (matrix<float>)
biases (array<float>)
weight_offsets (array<int>)
bias_offsets (array<int>)
activation (series string)
ml_nb
Fields:
class_priors (array<float>)
means (matrix<float>)
variances (matrix<float>)
n_classes (series int)
ml_scaler
Fields:
min_vals (array<float>)
max_vals (array<float>)
means (array<float>)
stds (array<float>)
method (series string)
ml_train_result
Fields:
loss_history (array<float>)
final_loss (series float)
converged (series bool)
iterations_run (series int)
ml_prediction
Fields:
class_label (series int)
probability (series float)
probabilities (array<float>)
value (series float)
Note di rilascio
Machine Learning Library for PineScript v6A comprehensive machine learning library providing classification, regression, neural networks, and trading utilities for TradingView's PineScript.
---
Constants
| Constant | Description |
|---------------------|--------------------------------------------------|
| EPSILON_TINY | Smallest epsilon (1e-15) for numerical stability |
| EPSILON_SMALL | Small epsilon (1e-10) for numerical stability |
| EPSILON_MEDIUM | Medium epsilon (1e-8) for numerical stability |
| LOG_2PI | Precomputed log(2*PI) for Gaussian calculations |
| MAX_ITERATIONS | Default max iterations for algorithms (100) |
| MAX_MATRIX_ELEMENTS | PineScript matrix element limit (100,000) |
---
User-Defined Types
| Type | Description |
|-----------------|---------------------------------------|
| ml_knn | K-Nearest Neighbors model |
| ml_linreg | Linear/Ridge regression model |
| ml_logreg | Logistic regression model |
| ml_nn | Multi-layer perceptron neural network |
| ml_nb | Gaussian Naive Bayes classifier |
| ml_scaler | Data scaler for normalization |
| ml_train_result | Training result with loss history |
| ml_prediction | Prediction result with probabilities |
---
Functions
Distance Functions
- euclidean(a, b) - Euclidean (L2) distance
- manhattan(a, b) - Manhattan (L1) distance
- cosine_similarity(a, b) - Cosine similarity (-1 to 1)
- cosine_distance(a, b) - Cosine distance (0 to 2)
- chebyshev(a, b) - Chebyshev (L-infinity) distance
- minkowski(a, b, p) - Minkowski distance of order p
- dot_product(a, b) - Dot product of two vectors
- vector_norm(arr, p) - P-norm of a vector
Activation Functions
- sigmoid(x) - Sigmoid activation (0 to 1)
- sigmoid_derivative(x) - Derivative of sigmoid
- tanh_derivative(x) - Derivative of tanh
- relu(x) - ReLU activation
- relu_derivative(x) - Derivative of ReLU
- leaky_relu(x, alpha) - Leaky ReLU activation
- leaky_relu_derivative(x, alpha) - Derivative of Leaky ReLU
- elu(x, alpha) - ELU activation
- gelu(x) - GELU activation
- swish(x, beta) - Swish activation
- softmax(arr) - Softmax for probability distribution
- apply_activation(arr, type, alpha) - Apply activation to array
Preprocessing / Scaling
- normalize_minmax(arr, min, max) - Min-max normalization [0,1]
- normalize_zscore(arr, mean, std) - Z-score standardization
- normalize_matrix_cols(m) - Standardize matrix columns
- scaler_fit(arr, method) - Fit scaler to array
- scaler_fit_matrix(m, method) - Fit scaler to matrix
- scaler_transform(scaler, arr) - Transform array with scaler
- scaler_transform_matrix(scaler, m) - Transform matrix with scaler
- clip(x, lo, hi) - Clip value to range
- clip_array(arr, lo, hi) - Clip array values
Loss Functions
- loss_mse(predicted, actual) - Mean Squared Error
- loss_rmse(predicted, actual) - Root Mean Squared Error
- loss_mae(predicted, actual) - Mean Absolute Error
- loss_binary_crossentropy(predicted, actual) - Binary Cross-Entropy
- loss_huber(predicted, actual, delta) - Huber loss
Optimization
- gradient_step(weights, gradients, lr) - SGD step
- adam_step(weights, gradients, m, v, lr, ...) - Adam optimizer step
- clip_gradients(gradients, max_norm) - Gradient clipping
- lr_decay(initial_lr, decay_rate, step) - Learning rate decay
- lr_cosine_annealing(initial_lr, min_lr, step, total) - Cosine annealing
K-Nearest Neighbors
- knn_create(k, distance_type) - Create KNN model
- knn_fit(model, X, y) - Fit KNN with training data
- knn_predict(model, x) - Predict single sample
- knn_predict_proba(model, x) - Predict class probabilities
- knn_batch_predict(model, X) - Predict multiple samples
Linear Regression
- linreg_fit(X, y) - Fit OLS linear regression
- ridge_fit(X, y, lambda) - Fit Ridge regression
- linreg_predict(model, x) - Predict single value
- linreg_predict_batch(model, X) - Predict multiple values
- linreg_score(model, X, y) - Calculate R-squared
Logistic Regression
- logreg_create(n_features, lr, iterations) - Create model
- logreg_fit(model, X, y) - Fit with gradient descent
- logreg_predict_proba(model, x) - Predict probability
- logreg_predict(model, x, threshold) - Predict class
- logreg_batch_predict(model, X, threshold) - Batch prediction
Naive Bayes
- nb_create(n_classes) - Create Gaussian Naive Bayes
- nb_fit(model, X, y) - Fit model
- nb_predict_proba(model, x) - Predict class probabilities
- nb_predict(model, x) - Predict class label
Neural Network
- nn_create(layers, activation) - Create MLP network
- nn_forward(model, x) - Forward propagation
- nn_predict_class(model, x) - Predict class label
Metrics
- accuracy(y_true, y_pred) - Classification accuracy
- precision(y_true, y_pred, positive_class) - Precision score
- recall(y_true, y_pred, positive_class) - Recall score
- f1_score(y_true, y_pred, positive_class) - F1 score
- r_squared(y_true, y_pred) - R-squared for regression
- mse(y_true, y_pred) - Mean Squared Error
- rmse(y_true, y_pred) - Root Mean Squared Error
- mae(y_true, y_pred) - Mean Absolute Error
- confusion_matrix(y_true, y_pred, n_classes) - Confusion matrix
Data Utilities
- sliding_window(data, window_size) - Create sliding window matrix
- train_test_split(X, y, test_ratio) - Split into train/test sets
- create_binary_labels(data, threshold) - Create binary labels
- lag_matrix(data, n_lags) - Create lag features
Trading Utilities
- signal_to_position(prediction, long_thresh, short_thresh) - Convert to position signal
- confidence_sizing(probability, max_size, min_confidence) - Size by confidence
- kelly_sizing(win_rate, avg_win, avg_loss, max_fraction) - Kelly Criterion sizing
- sharpe_ratio(returns, risk_free_rate) - Annualized Sharpe ratio
- sortino_ratio(returns, risk_free_rate) - Annualized Sortino ratio
- max_drawdown(equity) - Maximum drawdown
- atr_stop_loss(entry, atr, multiplier, is_long) - ATR-based stop loss
- risk_reward_take_profit(entry, stop_loss, ratio) - R:R take profit
- ensemble_vote(predictions) - Majority voting
- ensemble_weighted_average(predictions, weights) - Weighted average
- smooth_prediction(current, previous, alpha) - EMA smoothing
- regime_classifier(volatility, trend_strength, ...) - Market regime classification
Libreria Pine
Nello spirito di TradingView, l'autore ha pubblicato questo codice Pine come libreria open source affinché altri programmatori della nostra comunità possano riutilizzarlo. Complimenti all'autore! È possibile utilizzare questa libreria privatamente o in altre pubblicazioni open source, ma il riutilizzo di questo codice nelle pubblicazioni è soggetto al Regolamento.
Declinazione di responsabilità
Le informazioni e le pubblicazioni non sono intese come, e non costituiscono, consulenza o raccomandazioni finanziarie, di investimento, di trading o di altro tipo fornite o approvate da TradingView. Per ulteriori informazioni, consultare i Termini di utilizzo.
Libreria Pine
Nello spirito di TradingView, l'autore ha pubblicato questo codice Pine come libreria open source affinché altri programmatori della nostra comunità possano riutilizzarlo. Complimenti all'autore! È possibile utilizzare questa libreria privatamente o in altre pubblicazioni open source, ma il riutilizzo di questo codice nelle pubblicazioni è soggetto al Regolamento.
Declinazione di responsabilità
Le informazioni e le pubblicazioni non sono intese come, e non costituiscono, consulenza o raccomandazioni finanziarie, di investimento, di trading o di altro tipo fornite o approvate da TradingView. Per ulteriori informazioni, consultare i Termini di utilizzo.